References
  1. Lee W, Cho E, Kim W, Choi J-H. Performance evaluation of image quality metrics for perceptual assessment of low-dose computed tomography images. Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment: SPIE, 2022.
  2. Lee W, Cho E, Kim W, Choi H, Beck KS, Yoon HJ, Baek J, Choi J-H. No-reference perceptual CT image quality assessment based on a self-supervised learning framework. Machine Learning: Science and Technology 2022.
  3. Choi D, Kim W, Lee J, Han M, Baek J, Choi J-H. Integration of 2D iteration and a 3D CNN-based model for multi-type artifact suppression in C-arm cone-beam CT. Machine Vision and Applications 2021;32(116):1-14.
  4. Pal D, Patel B, Wang A. SSIQA: Multi-task learning for non-reference CT image quality assessment with self-supervised noise level prediction. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI): IEEE, 2021; p. 1962-1965.
  5. Mittal A, Moorthy AK, Bovik AC. No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 2012;21(12):4695-4708. doi: 10.1109/TIP.2012.2214050
  6. Lee J-YK, Wonjin; Lee, Yebin; Lee, Ji-Yeon; Ko, Eunji; Choi, Jang-Hwan. Unsupervised Domain Adaptation for Low-dose Computed Tomography Denoising. IEEE Access 2022.
  7. Jeon S-Y, Kim W, Choi J-H. MM-Net: Multi-frame and Multi-mask-based Unsupervised Deep Denoising for Low-dose Computed Tomography. IEEE Transactions on Radiation and Plasma Medical Sciences 2022.
  8. Kim W, Lee J, Kang M, Kim JS, Choi J-H. Wavelet subband-specific learning for low-dose computed tomography denoising. PloS one 2022;17(9):e0274308.
  9. Han M, Shim H, Baek J. Low-dose CT denoising via convolutional neural network with an observer loss function. Med Phys 2021;48(10):5727-5742. doi: 10.1002/mp.15161
  10. Kim B, Shim H, Baek J. Weakly-supervised progressive denoising with unpaired CT images. Med Image Anal 2021;71:102065. doi: 10.1016/j.media.2021.102065
  11. Wagner F, Thies M, Gu M, Huang Y, Pechmann S, Patwari M, Ploner S, Aust O, Uderhardt S, Schett G, Christiansen S, Maier A. Ultralow-parameter denoising: Trainable bilateral filter layers in computed tomography. Med Phys 2022;49(8):5107-5120. doi: 10.1002/mp.15718
  12. Kim B, Shim H, Baek J. A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation. Med Phys 2022. doi: 10.1002/mp.15885
  13. Kim S, Ahn J, Kim B, Kim C, Baek J. Convolutional neural network-based metal and streak artifacts reduction in dental CT images with sparse-view sampling scheme. Med Phys 2022;49(9):6253-6277. doi: 10.1002/mp.15884
  14. Bier B, Berger M, Maier A, Kachelrieß M, Ritschl L, Müller K, Choi JH, Fahrig R. Scatter correction using a primary modulator on a clinical angiography Carm CT system. Med Phys 2017;44(9):e125-e137.
  15. Maul N, Roser P, Birkhold A, Kowarschik M, Zhong X, Strobel N, Maier A. Learning-based occupational x-ray scatter estimation. Phys Med Biol 2022;67(7). doi: 10.1088/1361-6560/ac58dc
  16. Roser P, Birkhold A, Preuhs A, Syben C, Felsner L, Hoppe E, Strobel N, Kowarschik M, Fahrig R, Maier A. X-Ray Scatter Estimation Using Deep Splines. IEEE Trans Med Imaging 2021;40(9):2272-2283. doi: 10.1109/TMI.2021.3074712
  17. Maier J, Nitschke M, Choi JH, Gold G, Fahrig R, Eskofier BM, Maier A. Rigid and Non-Rigid Motion Compensation in Weight-Bearing CBCT of the Knee Using Simulated Inertial Measurements. IEEE Trans Biomed Eng 2022;69(5):1608-1619. doi: 10.1109/TBME.2021.3123673
  18. Choi JH, Maier A, Keil A, Pal S, McWalter EJ, Beaupré GS, Gold GE, Fahrig R. Fiducial markerbased correction for involuntary motion in weightbearing Carm CT scanning of knees. II. Experiment. Med Phys 2014;41(6Part1):061902.
  19. Choi JH, Fahrig R, Keil A, Besier TF, Pal S, McWalter EJ, Beaupré GS, Maier A. Fiducial markerbased correction for involuntary motion in weightbearing Carm CT scanning of knees. Part I. Numerical modelbased optimization. Med Phys 2013;40(9):091905.
  20. Berger M, Muller K, Aichert A, Unberath M, Thies J, Choi JH, Fahrig R, Maier A. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint. Med Phys 2016;43(3):1235-1248. doi: 10.1118/1.4941012
  21. Ko Y, Moon S, Baek J, Shim H. Rigid and non-rigid motion artifact reduction in X-ray CT using attention module. Med Image Anal 2021;67:101883. doi: 10.1016/j.media.2020.101883
  22. Preuhs A, Manhart M, Roser P, Hoppe E, Huang Y, Psychogios M, Kowarschik M, Maier A. Appearance Learning for Image-Based Motion Estimation in Tomography. IEEE Trans Med Imaging 2020;39(11):3667-3678. doi: 10.1109/TMI.2020.3002695